Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(10): 18717-18760, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-38052576

RESUMO

It is a fundamental question in mathematical epidemiology whether deadly infectious diseases only lead to a mere decline of their host populations or whether they can cause their complete disappearance. Upper density-dependent incidences do not lead to host extinction in simple, deterministic SI or SIS (susceptible-infectious) epidemic models. Infection-age structure is introduced into SIS models because of the biological accuracy offered by considering arbitrarily distributed infectious periods. In an SIS model with infection-age structure, survival of the susceptible host population is established for incidences that depend on the infection-age density in a general way. This confirms previous host persistence results without infection-age for incidence functions that are not generalizations of frequency-dependent transmission. For certain power incidences, hosts persist if some infected individuals leave the infected class and become susceptible again and the return rate dominates the infection-age dependent infectivity in a sufficient way. The hosts may be driven into extinction by the infectious disease if there is no return into the susceptible class at all.


Assuntos
Doenças Transmissíveis , Epidemias , Humanos , Modelos Biológicos , Doenças Transmissíveis/epidemiologia
2.
Elife ; 122023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665629

RESUMO

The majority of people with HIV live in sub-Saharan Africa, where epidemics are generalized. For these epidemics to develop, populations need to be mobile. However, the role of population-level mobility in the development of generalized HIV epidemics has not been studied. Here we do so by studying historical migration data from Botswana, which has one of the most severe generalized HIV epidemics worldwide; HIV prevalence was 21% in 2021. The country reported its first AIDS case in 1985 when it began to rapidly urbanize. We hypothesize that, during the development of Botswana's epidemic, the population was extremely mobile and the country was highly connected by substantial migratory flows. We test this mobility hypothesis by conducting a network analysis using a historical time series (1981-2011) of micro-census data from Botswana. Our results support our hypothesis. We found complex migration networks with very high rates of rural-to-urban, and urban-to-rural, migration: 10% of the population moved annually. Mining towns (where AIDS cases were first reported, and risk behavior was high) were important in-flow and out-flow migration hubs, suggesting that they functioned as 'core groups' for HIV transmission and dissemination. Migration networks could have dispersed HIV throughout Botswana and generated the current hyperendemic epidemic.


Over 25 million people in sub-Saharan Africa live with HIV. After reporting its first AIDS case in 1985, Botswana is one of the most severely affected countries in the region, with one in five adults now living with HIV. Movement of the population is likely to have contributed to a geographically dispersed, and high-prevalence, HIV epidemic in Botswana. Since 1985, urbanization, rapid economic and population growth, and migration have transformed Botswana. Yet, few studies have analyzed the role of population-level movement patterns in the spread of HIV during this time. By studying micro-census data from Botswana between 1981 and 2011, Song et al. found that the country's population was highly mobile during this period. Reconstructions of internal migration patterns show very high rates of rural-to-urban and urban-to-rural migration, with 10% of Botswana's population moving each year. The first reported AIDS cases in Botswana occurred in mining towns and cities where high-risk behavior was prevalent. These areas were also migration hubs during this period and could have contributed to the rapid spread of HIV throughout the country as infected individuals moved back to rural districts. Understanding human migration patterns and how they affect the spread of infectious diseases using current data could help public health authorities in Botswana and additional sub-Saharan African countries design control strategies for HIV and other important infections that occur in the region.


Assuntos
Epidemias , Infecções por HIV , Humanos , Botsuana/epidemiologia , Assunção de Riscos , Fatores de Tempo , Infecções por HIV/epidemiologia
3.
medRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778345

RESUMO

The majority of people with HIV live in sub-Saharan Africa, where HIV epidemics are generalized. For these epidemics to develop, populations need to be mobile. However, population-level mobility has not yet been studied in the context of the development of generalized HIV epidemics. Here we do so by studying historical migration data from Botswana which has one of the most severe generalized HIV epidemics worldwide; in 2021, HIV prevalence was 21%. The country reported its first AIDS case in 1985 when it began to rapidly urbanize. We hypothesize that, during the development of Botswana's epidemic, the population was highly mobile and there were substantial urban-to-rural and rural-to-urban migratory flows. We test this hypothesis by conducting a network analysis using a historical time series (1981 to 2011) of micro-census data from Botswana. We found 10% of the population moved their residency annually, complex migration networks connected urban with rural areas, and there were very high rates of rural-to-urban migration. Notably, we also found mining towns were both important in-flow and out-flow migration hubs; consequently, there was a very high turnover of residents in towns. Our results support our hypothesis, and together, provide one explanation for the development of Botswana's generalized epidemic.

5.
Elife ; 112022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255055

RESUMO

Mobile health (mHealth) interventions, which require ownership of mobile phones, are being investigated throughout Africa. We estimate the percentage of individuals who own mobile phones in 33 African countries, identify a relationship between ownership and proximity to a health clinic (HC), and quantify inequities in ownership. We investigate basic mobile phones (BPs) and smartphones (SPs): SPs can connect to the internet, BPs cannot. We use nationally representative data collected in 2017-2018 from 44,224 individuals in Round 7 of the Afrobarometer surveys. We use Bayesian multilevel logistic regression models for our analyses. We find 82% of individuals in 33 countries own mobile phones: 42% BPs and 40% SPs. Individuals who live close to an HC have higher odds of ownership than those who do not (aOR: 1.31, Bayesian 95% highest posterior density [HPD] region: 1.24-1.39). Men, compared with women, have over twice the odds of ownership (aOR: 2.37, 95% HPD region: 1.96-2.84). Urban residents, compared with rural residents, have almost three times the odds (aOR: 2.66, 95% HPD region: 2.22-3.18) and, amongst mobile phone owners, nearly three times the odds of owning an SP (aOR: 2.67, 95% HPD region: 2.33-3.10). Ownership increases with age, peaks in 26-40 year olds, then decreases. Individuals under 30 are more likely to own an SP than a BP, older individuals more likely to own a BP than an SP. Probability of ownership decreases with the Lived Poverty Index; however, some of the poorest individuals own SPs. If the digital devices needed for mHealth interventions are not equally available within the population (which we have found is the current situation), rolling out mHealth interventions in Africa is likely to propagate already existing inequities in access to healthcare.


Many healthcare systems in African countries are under-resourced. As a result, people, particularly those living in rural areas, often have to travel large distances to access the medical care they need. Mobile phone-based interventions (also known as mHealth) could make a substantial difference. In Africa, mHealth is already used to diagnose and treat diseases, increase adolescents' use of sexual and reproductive health services, boost HIV prevention and treatment, and improve maternal and child healthcare. However, using mHealth services requires owning a basic mobile phone or, in some cases, a smartphone that can access the internet. While mobile phone ownership in Africa is increasing rapidly, data on who has them and what types of phones they have are limited. If geographic, income, or gender-based inequities exist, mHealth interventions may not be able to reach those who would benefit the most. To close this knowledge gap, Okano et al. analyzed data on the mobile phone ownership of people living in 33 of the 54 countries in Africa. They used mathematical models and data collected from 44,224 people in Afrobarometer, a continent-wide survey conducted between 2017 and 2018. Okano et al. estimated that 80% of African adults in these 33 countries owned a mobile phone, and half of these devices were smartphones. Although ownership levels varied between the 33 countries, there were substantial inequities that appeared across all of them. More men than women owned a mobile phone. Residents in urban areas and wealthy individuals were also more likely to have a mobile phone than people living in rural areas and poorer individuals, respectively. However, in some countries, the least wealthy were also found to sometimes own smartphones. Okano et al. also found that people living closer to a health clinic were more likely to have a mobile phone than those living further away. Mobile phone ownership was also higher between 26 to 40 year olds, and then decreased with age. In addition, people under 30 were more likely to have a smartphone, whereas older individuals were more likely to own a mobile phone that does not connect to the internet. These findings suggest that there are large inequities in mobile phone ownership. If these are not addressed, rolling out mHealth interventions could worsen existing health disparities in African countries. Efforts need to be made across the continent to expand access to phone devices and reduce substantial internet costs. This will ensure that mHealth interventions benefit everyone across Africa, particularly those who need them most.


Assuntos
Telefone Celular , Telemedicina , Masculino , Feminino , Humanos , Propriedade , Teorema de Bayes , Smartphone
6.
BMC Public Health ; 22(1): 138, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057770

RESUMO

BACKGROUND: The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only. METHODS: We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics). RESULTS: This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high. CONCLUSIONS: To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation.


Assuntos
COVID-19 , Pandemias , Modelos Epidemiológicos , Humanos , Quarentena , SARS-CoV-2
7.
PLoS Comput Biol ; 17(9): e1009334, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495965

RESUMO

Epidemiological models can provide the dynamic evolution of a pandemic but they are based on many assumptions and parameters that have to be adjusted over the time the pandemic lasts. However, often the available data are not sufficient to identify the model parameters and hence infer the unobserved dynamics. Here, we develop a general framework for building a trustworthy data-driven epidemiological model, consisting of a workflow that integrates data acquisition and event timeline, model development, identifiability analysis, sensitivity analysis, model calibration, model robustness analysis, and projection with uncertainties in different scenarios. In particular, we apply this framework to propose a modified susceptible-exposed-infectious-recovered (SEIR) model, including new compartments and model vaccination in order to project the transmission dynamics of COVID-19 in New York City (NYC). We find that we can uniquely estimate the model parameters and accurately project the daily new infection cases, hospitalizations, and deaths, in agreement with the available data from NYC's government's website. In addition, we employ the calibrated data-driven model to study the effects of vaccination and timing of reopening indoor dining in NYC.


Assuntos
COVID-19 , Surtos de Doenças/estatística & dados numéricos , Modelos Estatísticos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Biologia Computacional , Humanos , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2
8.
J Theor Biol ; 467: 111-122, 2019 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-30735738

RESUMO

Mathematical modelers have attempted to capture the dynamics of Ebola transmission and to evaluate the effectiveness of control measures, as well as to make predictions about ongoing outbreaks. Many of their models consider only infections with typical symptoms, but Ebola presents clinically in a more complicated way. Even the most common symptom, fever, is not experienced by 13% of patients. This suggests that infected individuals could be asymptomatic or have moderately symptomatic infections as reported during previous Ebola outbreaks. To account crudely for the spectrum of clinical symptoms that characterizes Ebola infection, we developed a model including moderate and severe symptoms. Our model captures the dynamics of the recent outbreak of Ebola in Liberia. Our estimate of the basic reproduction number is 1.83 (CI: 1.72, 1.86), consistent with the WHO response team's estimate using early outbreak case data. We also estimate the effectiveness of interventions using observations before and after their introduction. As the final epidemic size is linked to the timing of interventions in an exponential fashion, a simple empirical formula is provided to guide policy-making. It suggests that early implementation could significantly decrease final size. We also compare our model to one with typical symptoms by excluding moderate ones. The model with only typical symptoms overestimates the basic reproduction number and effectiveness of control measures, and exaggerates changes in peak size attributable to the timing of interventions. In addition, uncertainty about how moderate symptoms affect the basic reproduction number is considered, and PRCC (Partial rank correlation coefficient) is used to analyze the global sensitivity of relevant parameters. Possible control strategies are evaluated through numerical simulations and sensitivity analysis, indicating that simultaneously strengthening contact-tracing and effectiveness of isolation in hospital would be most effective. In this study, we show that asymptomatic Ebola infections may have implications for policy-making.


Assuntos
Doença pelo Vírus Ebola/epidemiologia , Modelos Teóricos , Número Básico de Reprodução , Surtos de Doenças , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Libéria/epidemiologia , Formulação de Políticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...